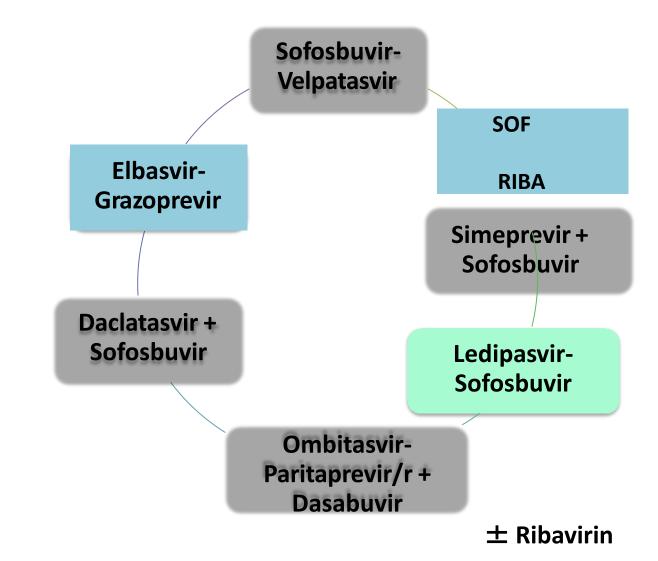
Treatment of Hepatitis C in 2017

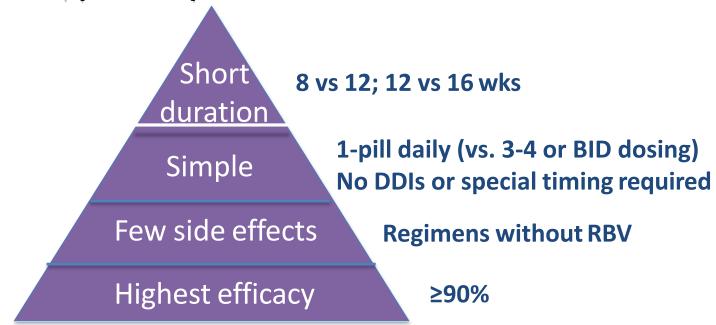
Special Populations: Every one is special

Robert G Gish MD Professor Consultant Stanford University


HASLD July 2017 Meeting HCMC VietNam

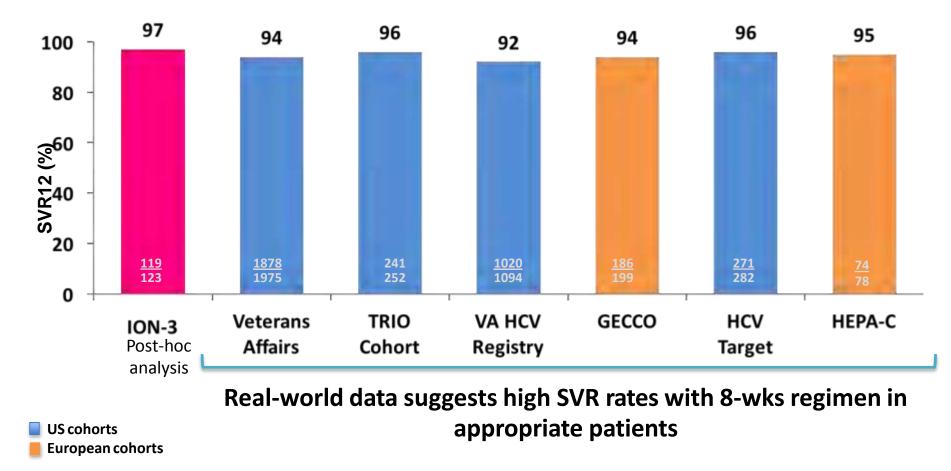
HCV Therapies in 2017 Many Tools in the Toolbox

Primary factors influencing choice:


- 1. HCV genotype
- 2. Prior HCV treatment
- 3. Cirrhosis, especially if decompensated
- 4. Renal disease
- 5. Insurer preference
- 6. Liver transplant
- 7. Cost
- 8. RAS/RAVs for GT1a and GT3
- 9. DDIs

SVR rate ≥90-99%

Choosing Among DAA Regimens


Provider/patient preferences:

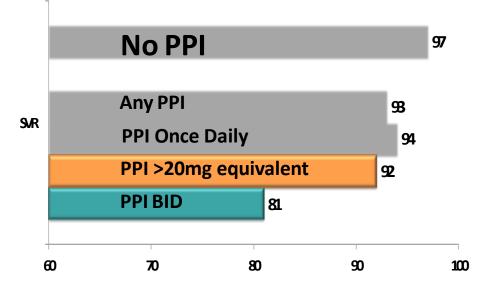
- External factors:
 - Approved drugs and their "label"
 - Access and ease of getting DAA approved

Low Viral Load

8-weeks of LDV-SOF is Treatment of Choice for GT-1 with VL <6M IU/mL and *no cirrhosis*

Kowdley K, N Engl J Med 2015 ; O'Brien T, Hepatology 2016; Ioannou G, Gastroenterology 2016; Younossi Y, AJMC, 2016; Backus L, Hepatology 2016; Ingiliiz P, Clin Infect Dis, 2016; Terrault N, HCV-TARGET. Gastroenterology 2016

No RAS testing needed if VL < 800 000


Treatment 12 weeks no ribavirin

Acid suppression therapy

High Dose PPI Use Significantly Impacts Efficacy of LDV-SOF Therapy

HCV-Target

- PPI use at baseline was independent predictor of SVR
- OR=0.41 (95% CI: 0.25-0.67)

TRIO

Propensity-Matched Cohorts

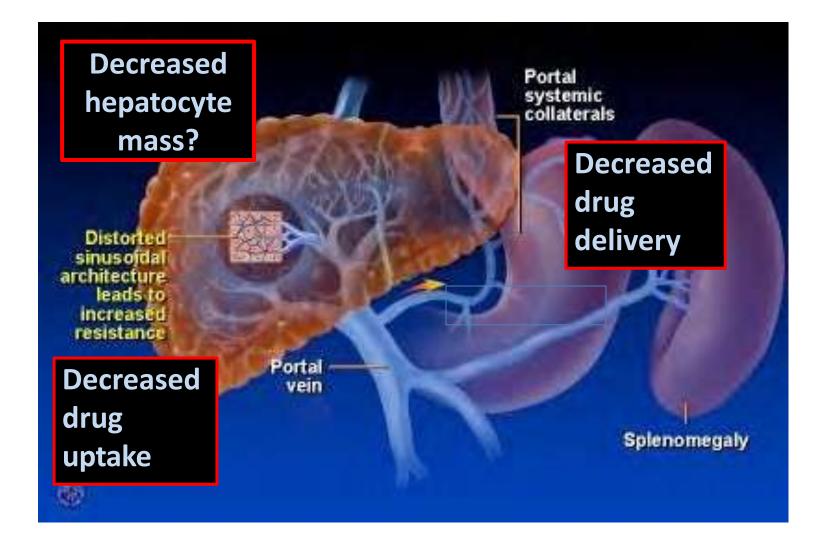
Group	All N=887	Cirrhosis N=337
No PPI	97%	96%
High dose PPI	98%	96%
BID PPI	91%	77%*
Any PPI	98%	96%

*P=0.05

- Only twice daily PPI at baseline associated with lower SVR
- Effect most marked in cirrhotics

Cirrhosis, Especially if Decompensated, Reduced SVR Rates

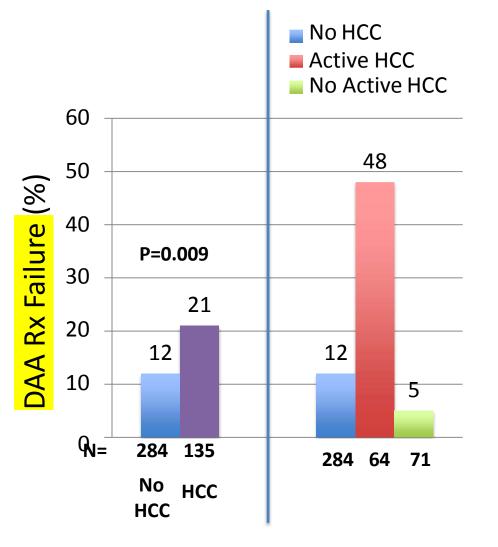
Predictors of SVR in patients treated with SOF/LDV for 12 wks



3 fold higher odds of SVR if no cirrhosis (vs. cirrhosis)4 fold higher odds of SVR if compensated cirrhosis (vs decompensated)

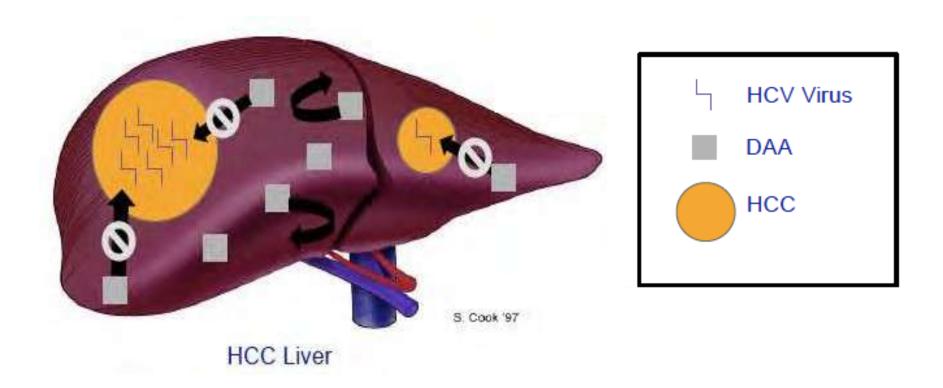
SVR12: SVR at 12 (±1) weeks post treatment

Terrault N, et al Gastroenterology 2016


Why Higher Rates of Virologic Failure with Advanced Cirrhosis?

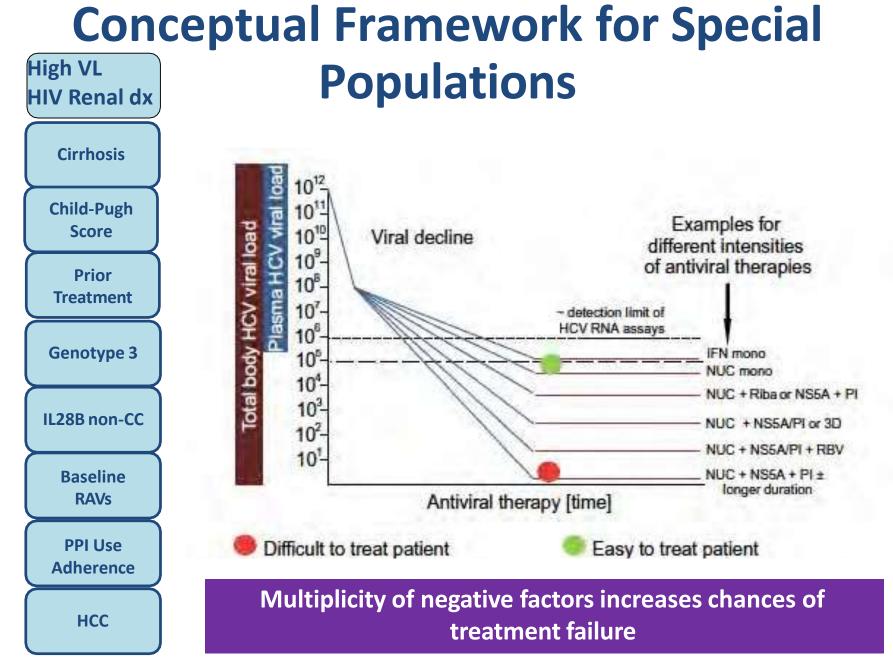
Does liver cancer sequester virus?

SVR12 Rates Reduced in Patients with HCV and "Active" HCC


Predictors of DAA Treatment Failure

Covariates	OR	95% CI	P Value
Inadequate regimen	2.85	1.32-6.16	0.008
Active tumor	8.49	3.90-18.49	<0.001
Platelet count	0.99	0.99-1.0	0.09

Adjusted for age, sex, race, CPT class, genotype and anti-HBc


Prenner S et al, J Hepatology, 2017

Why Higher Rates of Virologic Failure if HCC is Present?

Prenner S et al, J Hepatology, 2017, in press

Composite of special populations

Sarrazin C, J Hepatol 2016;64:486-504

We are choosing the best medications:

With low side effect profiles 1 pill per day **Pan-genotypic** Use in liver failure Use in renal failure Few DDI

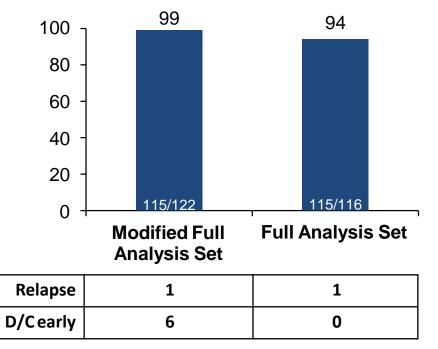
What Was Special About These Additions?

One-pill daily for 12 weeks for majority of patients

- SOF-VEL
- Pangenotypic
- First RBV-free therapy for G2/3

EBR-GZP: G1, 4

- Ideal for ESRD patients
- RBV-free option for those on PPIs
 - High response in Compensated cirrhosis


Renal failure

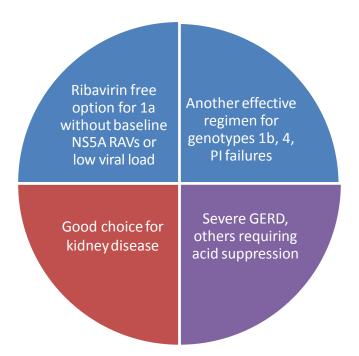
A major population in need of treatment

Elbasvir/Grazoprevir in HCV Genotype 1 and Chronic Kidney Disease (C-SURFER)

 RCT of Elbasvir-Grazoprevir (50/100) for 12 wks vs placebo

Characteristic	N=235 (%)
AA race	6%
Prior Treatment	20%
Cirrhosis	6%
G1A	52%
G1B	47%
СКD	
Stage 4	18%
Stage 5	82%
Dialysis	76%

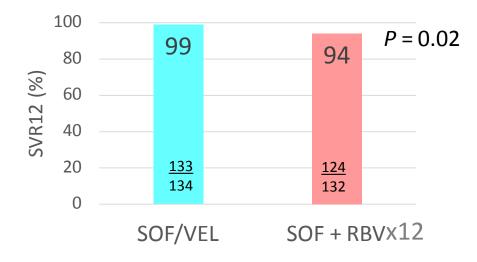
 Adverse effects similar to placebo group, including anemia


Where Does Elbasvir/Grazoprevir Fit In?

- Excellent rates of SVR
- Easy to use –
- < 800 000 IU no riba 12 weeks</p>
- but requires RAS testing if 1A
 but not in renal failure
 patients
- Treatment algorithm, is otherwise straightforward

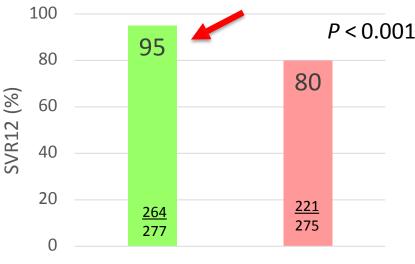
G1A + RASs 16 wk +RBV Other G1/G4 12 weeks GT 1a < 800K

<u>Same if:</u>


- Cirrhosis (compensated)/no cirrhosis
- Treatment naïve or experienced
- HIV positive or negative
- Renal failure or not

Sofosbuvir/Velpatasvir vs SOF/RBV

ASTRAL-2


- HCV genotype 2
- Naïve and previously treated Compensated cirrhosis included

Endpoint, n (%)	SOF/VEL	SOF + RBV
Relapse	0	6 (5)
Discontinuations due to AE	1(1)	0

ASTRAL-3

- HCV genotype 3
- Naïve and previously treated
 Compensated cirrhosis included

SOF/VEL x 12 SOF + RBV x 24

Endpoint, n (%)	SOF/VEL	SOF + RBV
Relapse	11 (4)	38 (4)
Breakthrough	0	1 (<1)

Foster GR. N Engl J Med 2015:373(27):2608-17

Genotype 2: not covered well by

Zepatier Viekira SOF LED

AASLD/IDSA Guidance: is this best for VN?

Genotype 2

Population	SOF/RBV	DAC/SOF	SOF/VEL
G2, naïve, no cirrhosis	Not recommended	Alternative, 12 weeks	✓ 12 weeks
G2, naive , <mark>compensated</mark> cirrhosis	Not recommended	Alternative, 16-24 weeks	✓ 12 weeks
G2, PEG/RBV, no cirrhosis	Not recommended	Alternative, 12 weeks	🗸 12 weeks
G2, PEG/RBV, compensated cirrhosis	Not recommended	Alternative, 16-24 weeks	✓ 12 weeks
G2, SOF/RBV	Not recommended	✓ 24 wks, + RBV	✓ 12 weeks + RBV

General Approach to Patient Who Has Failed DAA Therapy

- Compliance
- Virologic evaluation
 - Exclude genotype shift
 - Exclude HCV reinfection
 - Assess for RASs
- Approach guided by urgency of retreatment
 - Most patients can await next generation DAAs
- If must treat NOW
 - Tailor regimen according to results of RAS testing; use drugs without cross-resistance
 - If no RAS: Extend duration to 24 weeks
 - Add weight-based ribavirin, if not contraindicated

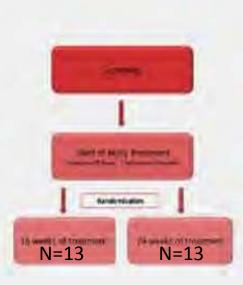
What's Available Now/soon?

- Retreatment with SOF/LED +- Riba 24 weeks
 - GT 1, 3, 4, 5, 6
- Sofosbuvir/velpatasvir + RBV
 - All genotypes, extensive data for GT 1 3
 - Also OK to use in decompensated patients (CTP B/C)
 - 24 weeks
- Sofosbuvir + elbasvir/grazoprevir + RBV
 - Data for GT 1 and 4
 - Contraindicated in decompensated patients
 - 12-24 weeks
- Also: SMV/SOF + RBV x 24, PROD + SOF + RBV x 24

REVENGE Retreatment: EBR/GZR + SOF + RBV X 16 vs 24 weeks

- GT 1 and 4 with documented NS5A or NS3 RASs
- Included patients with compensated cirrhosis
- SOF + EBR/GZR + RBV for 16 vs 24 weeks in DAA failures (SIM, LDV, DCV) +/- RBV

PATIENTS & METHODS

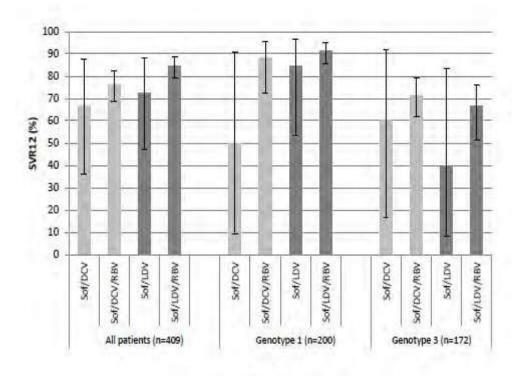

Randomized, double arm, multicenter, open-labeled. Phase II pilot study conducted in France.

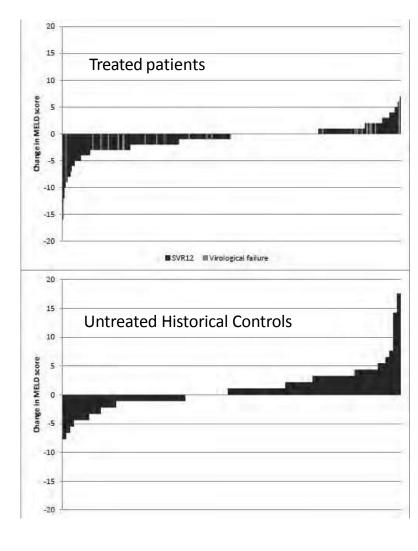
Main inclusion criteria

- Adult ≥18 years
- Infection with HCV genotype 1 or 4, confirmed by detectable HCV RNA at pre-inclusion
- Failure to a prior therapy with Sofosbuvir +/- Ribavirin associated with Simeprevir or Daclatasvir or Ledipasvir, with documented presence of NS5A or NS3 RASs (Resistance-Associated Substitutions) at the time of failure (presence of RASs on at least one sample since the time of failure).
- Fibrosis at any stage

Main non-inclusion criteria

- Child B or C cirrhosis (or Child A patients with history of Child B)
- Patients with documented presence of RASs conferring resistance to sofosbuvir
- Positive HBs Antigen
- Confirmed HIV-1 or HIV-2 infection
- Transplant recipients
- Prior DAAs used: SOF/LDV, SOF/DCV, SMV/SOF
- GT 1: 77% (20/26); GT 4 23% (6/26)
- > 50% of patients had cirrhosis
- 24/26 patients had NS5A RASs, 17/24 had Y93

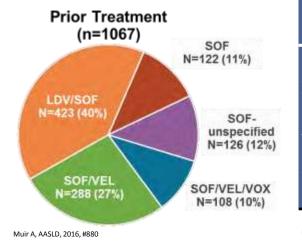

SVR4= 100%


AASLD Guidelines

 Recommended for All Patients with HCV Infection Who Have <u>Decompensated Cirrhosis</u>
 Patients with HCV infection who have <u>decompensated cirrhosis</u> (moderate or severe hepatic impairment; <u>Child Turcotte Pugh [CTP] class B or C</u>) should be referred to a medical practitioner with expertise in that condition (ideally in a liver transplant center). Rating: Class I, Level C

Impact of HCV Therapy on Decompensated Cirrhosis

 409 patients with decompensated cirrhosis treated through expanded access program with SOF/LDV or SOF/DCV ±RBV for 12 weeks



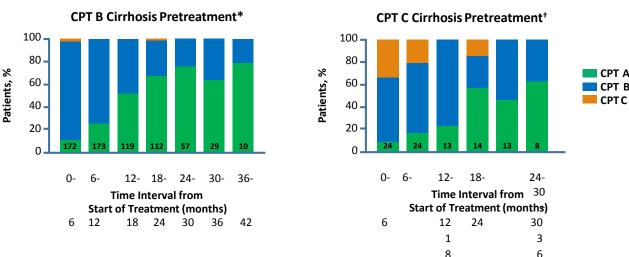
Foster et al, J Hep 2016

Long-term Follow-up of >1,000 HCV Patients With Compensated or Decompensated Cirrhosis Who Achieved SVR Following Treatment With Sofosbuvir-Based Regimens

Assessments

- Every 6 mo: HCV RNA; labs, CPT, MELD; any occurrence within preceding 6 mo of HCC, death, liver transplant, and hepatic events, and results of endoscopy or biopsy (if performed); health-related QoL questionnaires
- Baseline and yearly thereafter: transient elastography
- Baseline and Week 240: endoscopy
- End of study: liver biopsy (optional)

	Bennographiles and		
			N=1067
Demographics	Mean age, y (range)		59 (33–83)
	Male, n(%)		712(67)
	Race, n (%)	White	915 (86)
		Black	92 (9)
	Hispanic/Latino	145(14)	
	Region, n (%)	North America	840(78)
		Europe	149(14)
		Australia/New Zealand	71(7)
	Patient source, n (%)	Clinical study	834(78)
	r attent source, n (voj	Clinical practice	233 (22)
	Mean BMI, kg/m ² (Q1, Q3)		30 (26,33)
	Mean time since HCV diagnosis, y (range)		14 (1–51)
S	Cirrhosis, n (%)*		1064(>99)
risti	Decompensated		201(19)
acte		1	592 (55)
Disease characteristics	HCV GT, n (%)	2	49(5)
		3	148(14)
isea		4–6	43(4)
		Missing	235(22)
	Median platelets, x10 ³ /µL (r	ange)	133 (20–626)

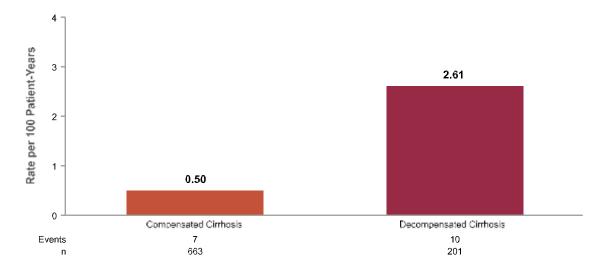

*Cirrhosis status determined prior to treatment with SOF-based regimen resulting in SVR. BMI, body mass index;GT, genotype; IL28B, interleukin-28B; Q, quartile.

Demographics and Disease Characteristics

Long-term Follow-up of >1,000 HCV Patients With Compensated or

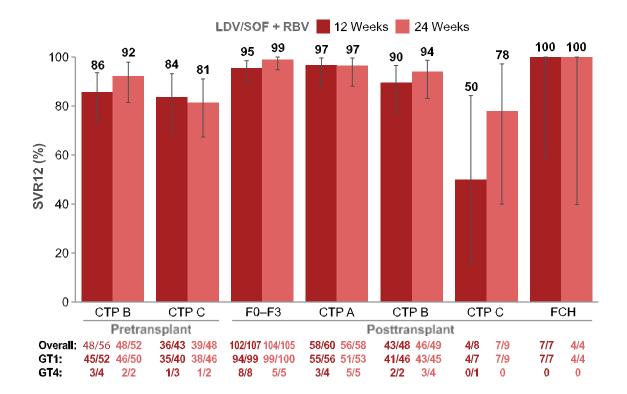
Decompensated Cirrhosis Who Achieved SVR Following Treatment

With Sofosbuvir-Based Regimens


Shift in CPT Classification

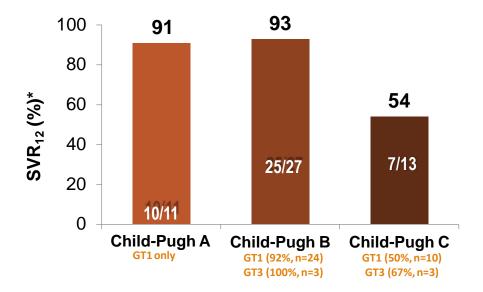
CPT A

- The majority of patients maintained or improved their CPT category relative to pretreatment through up to 36 (CPT C) or 42 (CPT B) months relative to treatment start
- Overall improvements in key laboratory components such as mean bilirubin and mean albumin were observed

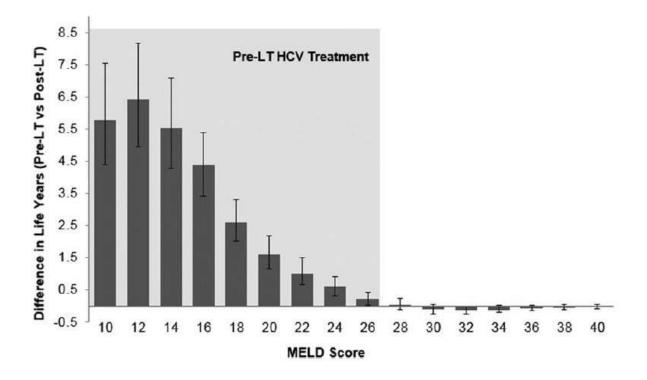

*Only 1 patient with CPT B cirrhosis prior to treatment has reached >42 mo since start of treatment; this patient had CPT A cirrhosis at last assessment. [†]Only 1 patient with CPT C cirrhosis prior to treatment has reached >36 mo since start of treatment; this patient had CPT A cirrhosis at last assessment.

HCC : Long-term Follow-up of >1,000 HCV Patients With Compensated or Decompensated Cirrhosis Who Achieved SVR Following Treatment With Sofosbuvir-Based Regimens

- >99% (1066/1067) have maintained SVR with a median (range) follow-up of 21 (2–44) months from end of treatment
- The incidence of de novo HCC among patients with compensated cirrhosis (0.50) was lower than the rates of 1.39 and 1.82 per 100 patient-years reported for IFN-treated patients with cirrhosis who achieved SVR^{1,2}
- The incidence of de novo HCC was higher among patients with decompensated cirrhosis (2.61), most of whom would not have been treated in the past


Efficacy

Gane, AASLD, 2015, 1049


Analysis excluded 13 patients transplanted prior to posttreatment Week (FU) 12 with HCV RNA <LLOQ at last measurement prior to transplant, and 3 pretransplant patients who were CTP A at baseline. *Error bars* represent 95% confidence intervals (CIs).

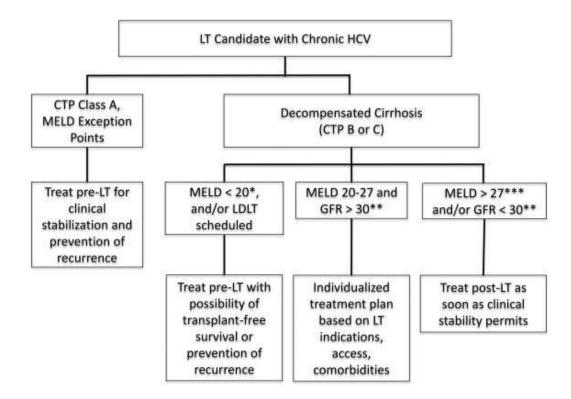
GT1 and GT3 Decompensated Cirrhotics treated with SOF/DCV + RBV for 12 weeks

Daklinza™ (daclatasvir) Prescribing Information. Bristol-Myers Squibb Company, Princeton, NJ.

Life Expectancy with liver transplant a consideration for Timing of Treatment

Chhatwal et al, Hepatol 2017

So Treatment Before Transplant?

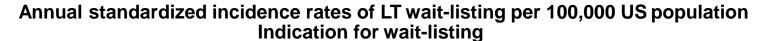

Pros

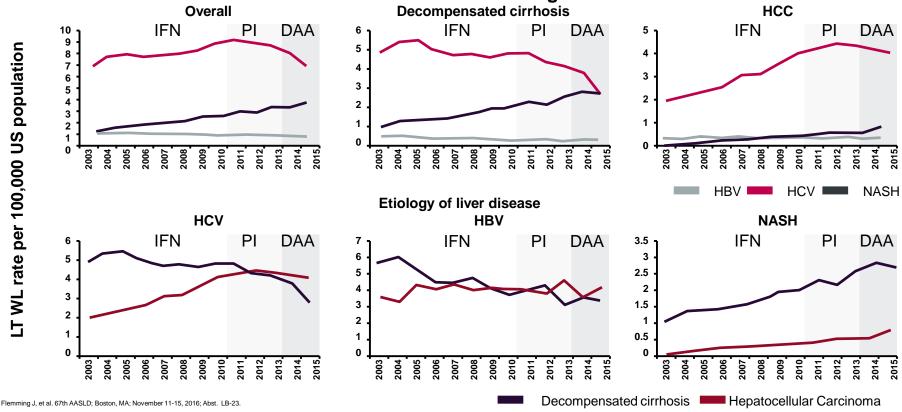
- Can remain active on waitlist during therapy
- Cure of HCV is likely:
 - May stabilize or improve liver disease
 - Decreased risk of progression/decompens ation
 - Decreased risk of new onset diabetes after transplant
- Avoids drug interactions with IS
- Public health concern

Cons

- More ? Efficacious/safe in post transplant setting
- Cure eliminates HCV+ donor option
 - Longer wait times
 - May limit choice of deceased donor
 - May lose transplant opportunity
 - Inadvertantly shorten life expectancy
 - Increased graft discard rate
- Potential DDI necessitates close IS monitoring

Proposed Algorithm for HCV treatment for Liver Transplant Candidates

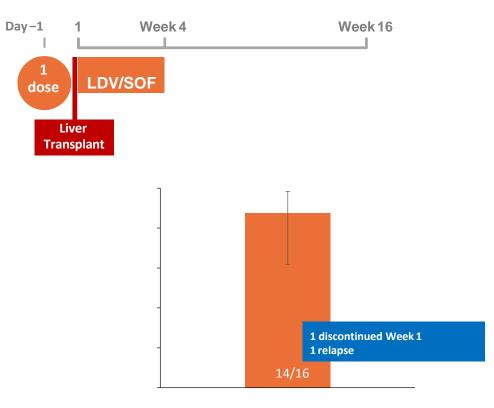



Verna E, Hepatol 2017

DAAs in Advanced Liver and/or Renal Disease

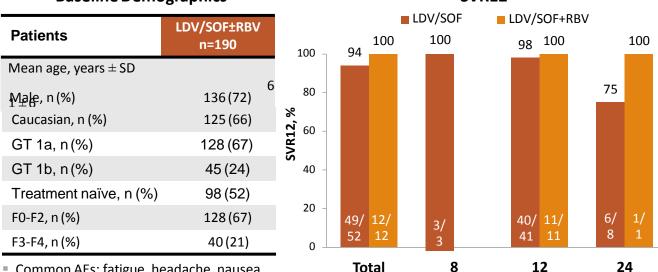
	СТР А	СТР В	СТР С	GFR<30 or dialysis
Simeprevir	\checkmark	NO	NO	$\sqrt{(but needs)}$ SOF so NO
Sofosbuvir/Ledipasvir	\checkmark	\checkmark	\checkmark	NO
Sofosbuvir/Velpatasvir	\checkmark	\checkmark	\checkmark	NO
Daclatasvir	\checkmark	\checkmark	\checkmark	√(but needs SOF so NO)
Paritaprevir/r/ombitasvir /dasabuvir	\checkmark	NO	NO	\checkmark
Elbasvir/Grazoprevir	\checkmark	NO	NO	\checkmark

LB-23. Reduction in Liver Transplant Wait-Listing in the Era of Direct Acting Anti-Viral Therapy



Post Liver Transplant

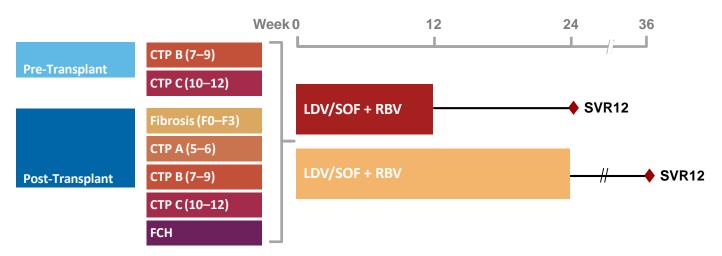
Natural History of HCV Pre vs Post Transplant


	Immunocompetent	Post-Transplant
Fibrosis Progression per year	0.1-0.2/year	0.4-0.6/year
Median Time to Cirrhosis	20-30 years	10-12 years
Decompensation after Cirrhosis	20% in 10 years	50% in 1 year
Survival after Decompensation	50% in 5 years	40% in 1 year

LDV/SOF peri-OLT for 4 weeks to prevent HCV recurrence

LDV/SOF±RBV for Recurrent HCV in Liver **Transplant Recipients: Interim Analysis**

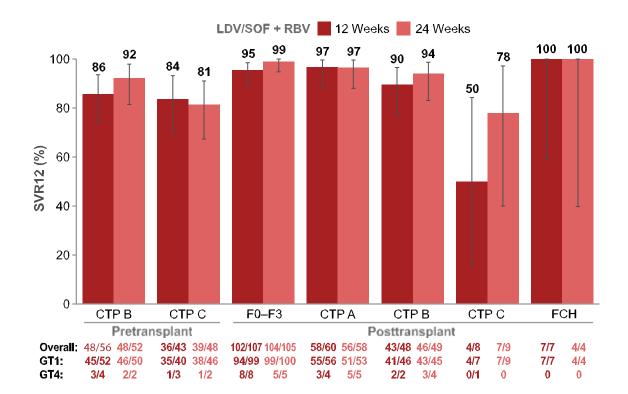
Multicenter, retrospective analysis of LDV/SOF±RBV in 190 patients with HCV recurrence post-liver transplant **Baseline Demographics SVR12**


Common AEs: fatigue, headache, nausea

3 (2%) D/C due to AEs

Immunosuppressant adjustment in 60 (32%)

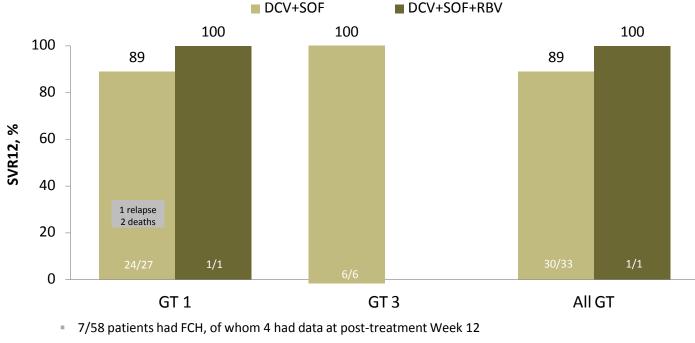
Duration of Therapy (Weeks)


LDV/SOF+RBV for 12 or 24 Weeks in 667 Decompensated and Post-Liver Transplant HCV GT 1 and GT 4 Patients

- Broad inclusion criteria:
 - No hepatocellular carcinoma (HCC)
 - − Total bilirubin \leq 10 mg/dL, Hemoglobin \geq 10 g/dL
 - CrCl \geq 40 mL/min, Platelets > 30,000/mL
- RBV dosing
 - FCH, Metavir F0–F3 and CTP A cirrhosis: weight-based (1000 mg or 1200 mg)
 - CTP B and C cirrhosis (pre- and post-transplant: dose escalation, 600–1200 mg/d

Gane, AASLD, 2015, 1049

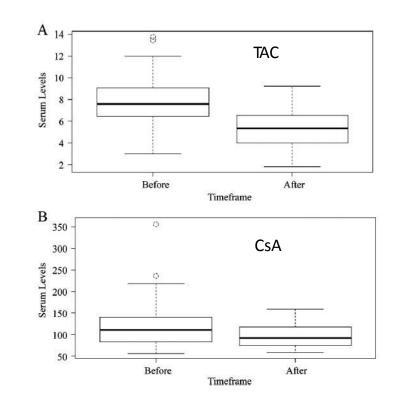
Efficacy

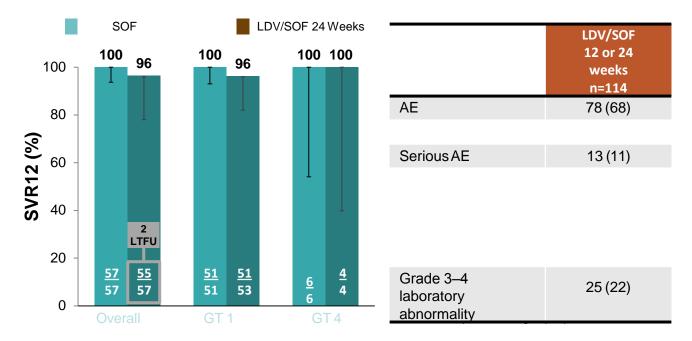

Gane, AASLD, 2015, 1049

Analysis excluded 13 patients transplanted prior to posttreatment Week (FU) 12 with HCV RNA <LLOQ at last measurement prior to transplant, and 3 pretransplant patients who were CTP A at baseline. *Error bars* represent 95% confidence intervals (CIs).

DCV+SOF in Patients with

Recurrent HCV Following Liver


Transplantation


All 4 showed rapid viral decline and achieved SVR12

Changes in IS Drug Levels After SVR

- Curing HCV may result in increased immunosuppression dosing needs due to increased drug metabolism
- Caution to monitor drug levels carefully during and after treatment to minimize risk of ACR, especially with tacrolimus

LDV/SOF for 12 or 24 Weeks in Kidney Transplant Recipients with GT1 or 4 HCV

LDV/SOF for 12 weeks resulted in 100% SVR12 in HCV-infected kidney transplant irrespective of cirrhosis and treatment experience

Error bars represent 95% confidence intervals. Colombo, EASL 2016, Oral GS-13

Summary: DAAs, Cirrhosis, Post Transplant

	Cirrhosis			Post Transplant Immunosuppression	
Regimen	CTP A	CTP B	CTP C	Tacrolimus	Cyclosporine
Ledipasvir/SOF	Yes	Yes	Yes	Yes	Ye s some DDIs
Daclastavir/SOF	Yes	Yes	Yes	Yes	Yes
Grazoprevir/Elbasvir	Yes	NO	NO	Ye s some DDIs	NO
Paritaprevir/Ritonovir/ Ombitasvir/Dasabuvir	Yes	NO	NO	Significant DDIs, only early stage fibrosis	Significant DDIs, only early stage fibrosis
Simeprevir/SOF	Yes	NO	NO	Yes some DDIs	NO

Other "New" Concerns

- Drug toxicity
- HBV reactivation

Drug Toxicities: Continued Vigilance

CORRESPONDENCE

Bradyarrhythmias Associated with Sofosbuvir Treatment N Engl J Med 2015; 373:1886-1888 November 5, 2015 | DOI: 10.1056/NEJMc1505967

- Prospective study from France, N=415
- 5 cases of severe arrhythmias (1.3%)
- All occurred within days of starting SOF
- 3 had pacemaker placed
- I recurred on re-challenge

Coadministration of sofosbuvir and amiodarone is not recommended →reports of symptomatic bradycardia and a fatal cardiac arrest FDA Drug Safety Communication: FDA warns of serious liver injury risk with hepatitis C treatments Viekira Pak and Technivie

- Ombitasvir-paritaprevir-ritonavir
 ± dasabuvir in cirrhotics →
 hepatic decompensation, need
 for LT and death
- Most cases occurred within one to four weeks of drug initiation
- Some of the cases occurred in patients for whom these medicines were contraindicated or not recommended

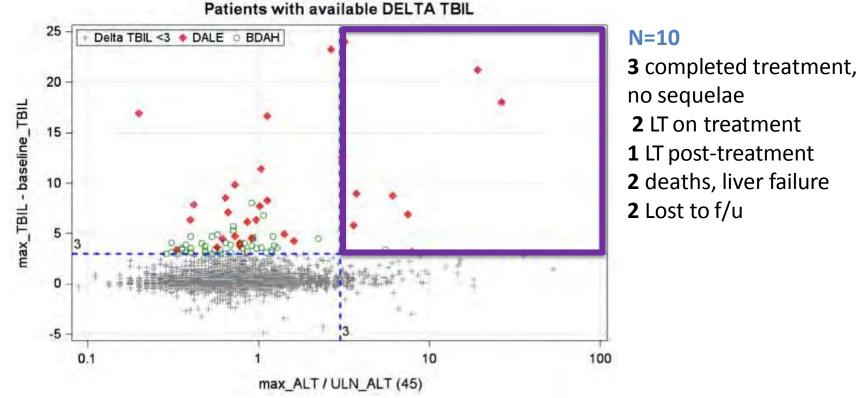
Are DAA's safe?

- Institute for Safe Medication Practices
 - "nation's only 501c (3) nonprofit organization devoted entirely to medication error prevention and safe medication use"
- Jan 25 2017 report
 - 12 months ending June 30, 2016
 - FDA Adverse Event Reporting System (FAERS) data
 - 524 cases of liver failure associated with drugs (worldwide)
 - ~50% with encephalopathy
 - **165 (31%) died**
 - 1058 reports of severe liver injury
 - 761 cases with adverse event of virologic failure
 - 90% of reports by MD's
 - 34 cases from the literature

www.ismp.org/QuarterWatch/

Are DAA's safe? Yes: reporting of AE are biased by use in ill/ESLD patients

Primary and secondary drugs in liver injury cases


Drug name	Primary	Secondary	Total	Percent
Daclatasvir	74	35	99	18.9%
Elbasvir-grazoprevir	1	0	1	0.2%
Ledipasvir-sofosbuvir	116	5	121	23.1%
Paritaprevir combos	120	61	181	34.5%
Simeprevir	16	21	37	7.1%
Sofosbuvir	91	80	171	32.6%

Limitations: incompleteness and bias of voluntary reporting

Drug Associated Liver Events (DALE)

HCV-TARGE

- Drug-induced liver injury (DILI) define by ALT as indicator of hepatocellular injury and total bilirubin (TBIL) as measure of impaired liver function alone and together
- Upper right quadrant = potential DILI cases, and normal cases are in the lower left quadrant (Guo T, et al., 2009).

Reference lines, 3xULN to account for RBV effects) for TBILxULN (ULN=1.2) and 3xULN for ALTxULN (ULN=45)

DAAs Safety in Real-World Cohorts

- Real life cohorts, such as target indicate DAA therapy has an exemplary safety profile across a broad population of patients treated in usual clinical practice.
 - Fewer than 2% of patients discontinued therapy due to adverse events
 - Only 2.3% had hyperbilirubinemia and 0.2% met definition of drug-induced liver injury
- Differentiating potential DILI from progression of underlying disease remains challenging
 - Hyperbilirubinemia may be associated with acute comorbid medical conditions, benign DAA +/- RBV effects, or treatment emergent drug-associated liver events.
 - Drug-associated liver events associated with features of cirrhosis and use of ribavirin-containing regimens

HCV Guidance: Recommendations for Testing, Managing, and Treating Hepatitis C

HBV risk of reactivation

- For HBsAg+ patients who are not already on HBV suppressive therapy, monitoring of HBV DNA levels during and immediately after DAA therapy for HCV is recommended and antiviral treatment for HBV/ should be given if treatment criteria for HBV are met.
 - **Rating: Class IIa, Level B**

Summary

HCV Treatment in 2017 for special populations

- Currently approved drugs achieve SVR rates in clinical practice similar to that of clinical trials
- Large real life cohorts help identify new factors associated with treatment failure: PPIs (VEL/LDV), HCC, some RAS/RAVs
- Baseline and treatment-emergent RASs may influence treatment options and anticipated SVR rates, use Riba, extend therapy ?
- Fewer "difficult to cure" or "special" patient groups
 - DAA failures represent small but challenging group currently
- Exceptional safety record when used in the appropriate patient population but continued vigilance necessary, especially in patients with cirrhosis, decompensation
- TB: evaluate for drug-drug interactions: if active TB treat TB first, if + skin test, but no active disease, treat HCV first
- HIV HCV co-infection: treat 12 weeks with SOC therapies
 - Watch for DDI
- Children: can treat down to age 12 with LED SOF and SOF based therapies

Carrie Frenette MD Scripps

Norah Terrault UCSF

For the use of their slides, as modified

BS Hoang

BS Thuy

and the HASLD team !